

Polyintec® AP6070

High Density Polyethylene Homopolymer Blow Molding HDPE (BM)

Product Description:

Polyintec® AP6070 is a high density polyethylene homopolymer, designed specifically for blow molding applications, particularly food containers, using reciprocating screw-type equipment. It provides excellent processing characteristics, exhibits extremely low odor in finished products, and meets Food and Drug Administration requirements of 21CFR 177.1520.

Suggested Applications:

Food containers, Blow molded products.

Nominal Physical Properties:

PROPERTY	ASTM TEST METHOD	UNIT	VALUE
Typical Resin Properties for AP6070:			
Melt Index (190°C/2.16 kg)	D1238	g/10 min	0.72
Density	D4883	g/cc	0.963
Compression Molded Samples			
Tensile Strength @ Yield	D638	MPa (psi)	31.0 (4500)
Tensile Strength @ Break	D638	MPa (psi)	13.8 (2000)
Elongation @ Yield	D638	%	8
Elongation @ Break	D638	%	>600
Flexural Modulus (Tangent Method)	D790A	MPa (psi)	1650 (240000)
Flexural Modulus (2% Secant)	D790A	MPa (psi)	1311 (150000)
Notched Izod Impact Strength	D256	kJ/m² (ft-lbf/in)	25.2 (4.8)
Hardness (Shore D)	D2240		70
Vicat Softening Point	D1525	°C (°F)	129 (264)
Brittleness Temperature	D746	°C (°F)	<-75 (<-103)
Heat Deflection Temperature @ 66 psi (455 kPa)	D648	°C (°F)	81 (178)
Heat Deflection Temperature @ 264 psi (1820 kPa)	D648	°C (°F)	49 (120)
Environmental Stress Crack Resistance	D1693	hrs	8
(Condition B, 100% Igepal, F50)			

Important Note:

The properties listed above are typical values obtained under laboratory conditions and are not intended to be used as specifications. Users should perform their own tests to determine the suitability of this product for their specific applications. The information is provided as a guide and should not be construed as a warranty.