

Polyintec ® PPR01A-01

Polypropylene Random Copolymer

Product Description:

Polyintec® PPR01A-01 is a low flow rate, antistatic polypropylene random copolymer. It is designed for blow molding, thermoforming, and extrusion applications that require good stiffness and improved processability. Benefits of this grade include good see-through and contact clarity, and good impact resistance at both room and refrigerator temperatures. This material meets the requirements of the U.S. Food and Drug Administration as specified in 21 CFR 177.1520.

Suggested Applications:

Blow molding, Thermoforming, Extrusion.

Nominal Physical Properties:

Property	Value (English)	Value (SI)	ASTM Method
Resin			
Density	0.900 g/cc	0.900 g/cc	D792
Melt Flow Rate (230°C/2.16 kg)	1.9 g/10 min	1.9 g/10 min	D1238
Injection Molded Sample			
Tensile Strength @ Yield	4,070 psi	28.0 MPa	D638
Tensile Strength @ Break	3,180 psi	22.0 MPa	D638
Elongation @ Yield	13%	13%	D638
Elongation @ Break	675%	675%	D638
Flexural Modulus (1% Secant)	143,000 psi	985 MPa	D790A
Notched Izod Impact Strength @ 23°C	1.6 ft-lbf/in	8.3 kJ/m²	D256
Notched Izod Impact Strength @ 4°C	0.7 ft-lbf/in	3.6 kJ/m²	D256
Hardness (Rockwell R)	76	76	D785
Vicat Softening Point	271 °F	133 °C	D1525
Deflection Temperature @ 66 psi (455 kPa)	176 °F	80 °C	D648
Haze, @ 23°C, 50-mil (1.3mm) plaque	57%	57%	D1003
Gloss at 60° angle	93	93	D2457

Important Note:

The properties listed above are typical values obtained under laboratory conditions and are not intended to be used as specifications. The information is only the opinion of AMERICORP INTERNATIONAL LTD, U.S.A. and users should perform

their own tests. AMERICORP INTERNATIONAL LTD makes no warranty and the responsibility is limited to the purchase price of the material. Statements are not to be construed as recommending the infringement of any patent.				